63 research outputs found

    Developing an Advanced IPv6 Evasion Attack Detection Framework

    Get PDF
    Internet Protocol Version 6 (IPv6) is the most recent generation of Internet protocol. The transition from the current Internet Version 4 (IPv4) to IPv6 raised new issues and the most crucial issue is security vulnerabilities. Most vulnerabilities are common between IPv4 and IPv6, e.g. Evasion attack, Distributed Denial of Service (DDOS) and Fragmentation attack. According to the IPv6 RFC (Request for Comment) recommendations, there are potential attacks against various Operating Systems. Discrepancies between the behaviour of several Operating Systems can lead to Intrusion Detection System (IDS) evasion, Firewall evasion, Operating System fingerprint, Network Mapping, DoS/DDoS attack and Remote code execution attack. We investigated some of the security issues on IPv6 by reviewing existing solutions and methods and performed tests on two open source Network Intrusion Detection Systems (NIDSs) which are Snort and Suricata against some of IPv6 evasions and attack methods. The results show that both NIDSs are unable to detect most of the methods that are used to evade detection. This thesis presents a detection framework specifically developed for IPv6 network to detect evasion, insertion and DoS attacks when using IPv6 Extension Headers and Fragmentation. We implemented the proposed theoretical solution into a proposed framework for evaluation tests. To develop the framework, “dpkt” module is employed to capture and decode the packet. During the development phase, a bug on the module used to parse/decode packets has been found and a patch provided for the module to decode the IPv6 packet correctly. The standard unpack function included in the “ip6” section of the “dpkt” package follows extension headers which means following its parsing, one has no access to all the extension headers in their original order. By defining, a new field called all_extension_headers and adding each header to it before it is moved along allows us to have access to all the extension headers while keeping the original parse speed of the framework virtually untouched. The extra memory footprint from this is also negligible as it will be a linear fraction of the size of the whole set of packet. By decoding the packet, extracting data from packet and evaluating the data with user-defined value, the proposed framework is able to detect IPv6 Evasion, Insertion and DoS attacks. The proposed framework consists of four layers. The first layer captures the network traffic and passes it to second layer for packet decoding which is the most important part of the detection process. It is because, if NIDS could not decode and extract the packet content, it would not be able to pass correct information into the Detection Engine process for detection. Once the packet has been decoded by the decoding process, the decoded packet will be sent to the third layer which is the brain of the proposed solution to make a decision by evaluating the information with the defined value to see whether the packet is threatened or not. This layer is called the Detection Engine. Once the packet(s) has been examined by detection processes, the result will be sent to output layer. If the packet matches with a type or signature that system admin chose, it raises an alarm and automatically logs all details of the packet and saves it for system admin for further investigation. We evaluated the proposed framework and its subsequent process via numerous experiments. The results of these conclude that the proposed framework, called NOPO framework, is able to offer better detection in terms of accuracy, with a more accurate packet decoding process, and reduced resources usage compared to both exciting NIDs

    Cost-effectiveness of cardiac resynchronization therapy plus an implantable cardioverter-defibrillator in patients with heart failure: a systematic review

    Get PDF
    Introduction: Heart failure (HF) is an unusual heart function that causes reduction in cardiac or pulmonary output. Cardiac resynchronization therapy (CRT) is a mechanical device that helps to recover ventricular dysfunction by pacing the ventricles. This study planned to systematically review cost-effectiveness of CRT combined with an implantable cardioverter-defibrillator (ICD) versus ICD in patients with HF. Methods: We used five databases (NHS Economic Evaluation Database, Cochrane Library, Medline, PubMed, and Scopus) to systematically reviewed studies published in the English language on the cost-effectiveness of CRT with defibrillator (CRT-D) Vs. ICD in patients with HF over 2000 to 2020. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist was applied to assess the quality of the selected studies. Results: Five studies reporting the cost-effectiveness of CRT-D vs ICD were finally identified. The results revealed that time horizon, direct medical costs, type of model, discount rate, and sensitivity analysis obviously mentioned in almost all studies. All studies used quality-adjusted life years (QALYs) as an effectiveness measurement. The highest and the lowest Incremental cost-effectiveness ratio (ICER) were reported in the USA (138,649per QALY) and the UK (41,787per QALY), respectively. Conclusion: Result of the study showed that CRT-D compared to ICD alone was the most cost-effective treatment in patients with HF. © 2021, The Author(s)

    Wireless Sensors for Brain Activity—A Survey

    Get PDF
    Over the last decade, the area of electroencephalography (EEG) witnessed a progressive move from high-end large measurement devices, relying on accurate construction and providing high sensitivity, to miniature hardware, more specifically wireless wearable EEG devices. While accurate, traditional EEG systems need a complex structure and long periods of application time, unwittingly causing discomfort and distress on the users. Given their size and price, aside from their lower sensitivity and narrower spectrum band(s), wearable EEG devices may be used regularly by individuals for continuous collection of user data from non-medical environments. This allows their usage for diverse, nontraditional, non-medical applications, including cognition, BCI, education, and gaming. Given the reduced need for standardization or accuracy, the area remains a rather incipient one, mostly driven by the emergence of new devices that represent the critical link of the innovation chain. In this context, the aim of this study is to provide a holistic assessment of the consumer-grade EEG devices for cognition, BCI, education, and gaming, based on the existing products, the success of their underlying technologies, as benchmarked by the undertaken studies, and their integration with current applications across the four areas. Beyond establishing a reference point, this review also provides the critical and necessary systematic guidance for non-medical EEG research and development efforts at the start of their investigation.</jats:p

    Brainwave-based authentication using features fusion

    Get PDF
    This article investigates the use of human brainwaves for user authentication. We used data collected from 50 volunteers and leveraged the Support Vector Machine (SVM) as a classification algorithm for the case study. User recognition patterns are taken from a combination of blinking, attention concentration, and picture recognition emotion sequences. These actions impact alpha, beta, gamma, and theta brain waves, which are measured using several electrodes. Ten different electrode placement patterns are explored, with varied positioning on the head. For each placement position, four features are examined, for a total of 40 extracts in the learning model. Features are: 1) spectral information, 2) coherence, 3) mutual correlation coefficient, and 4) mutual information. Each feature type is trained by the SVM algorithm, and the 40 weak classifier candidates. Adaptive Boosting (AdaBoost), a type of machine learning, is then used to generate a robust classifier, which is subsequently used to create a model, and select features, used to accurately identify individuals for authentication purposes. Upon verifying the proposed method using 32 legitimate users and 18 intruders, we obtained an authentication error rate (ERR) of 0.52%, and a classification rate of 99.06%

    Novel VIPAS39 mutation in a syndromic patient with arthrogryposis, renal tubular dysfunction and intrahepatic cholestasis

    Get PDF
    ARC syndrome is a rare autosomal recessive disease, characterized by arthrogryposis, renal tubular dysfunction and cholestasis. Herein a 2.5 month old infant with dysmorphic features, including small anterior fontanel, low set ears, beaked nose and high arched palate is presented who was referred because of icterus. He also suffered from some additional anomalies, including unilateral choanal atresia, club foot, and bilateral developmental dislocation of hip, while further studies showed renal tubular acidosis and hearing impairment in addition to cholestasis. Genetic studies showed a homozygous mutation in the VIPAS39 gene. Making the definite diagnosis of the syndrome is important, while increased risk of mutation in other siblings highlights the importance of prenatal diagnosis

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore